Theory
We use the power of computers and theory to gain a fundamental understanding of chemistry and chemical reactions.
Our Research Group applies the fundamental laws of quantum mechanics to the interpretation, modelling and calculation of the structure, energetics, dynamics, chemical and physical properties of atoms, molecules and materials.
Theory and experiment are complementary: theory has an important role in interpretation of new experimental results, and new experiments challenge us to devise new theories. Therefore, we are involved in many collaborations with experimental groups both inside and outside the department.
Major themes
- Theory Development - Developing new theories and methods for electronic structure, graph theoretical, and quantum dynamics calculations with a particular emphasis on the development of parallel and GPU-based methods.
- Computational Chemistry - Mechanism elucidation for reactions from small organic molecules to fuel chemistry, structure and property prediction. Collaborations with many experimental groups, both locally and internationally.
- Materials Chemistry - Investigation of the structures and properties of new materials, in particular materials with possible applications in solar cells, photocatalysis and sensors.
- Astrochemistry - Formation of molecules in the interstellar medium with a particular emphasis on reaction on surfaces and the formation of complex organic molecules.
- Intermolecular Forces - Study of the fundamental interactions between atoms and molecules, and self-assembly of organic molecules into large ordered supramolecular aggregates.
- Photochemistry - Investigations into the interaction of matter with light for molecules, biomolecular systems, and solid materials. Our calculations are used to explain, underpin, and drive experimental observations in this area.
- Machine learning - Improving current computational chemistry and electronic structure approaches using the latest techniques from computer science and statistics.
Key publications
Steiner E, Fowler PW. . Organic & Biomolecular Chemistry. 2004 Jan;2(1):34-37.
Slate ECS, et al. . Monthly Notices of the Royal Astronomical Society. 2020&²Ô²ú²õ±è;°¿³¦³Ù;&²Ô²ú²õ±è;497(4):5413–5420.
Shaw RA, Hill JG. . J Chem Theory Comput. 2019 Oct 8;15(10):5352-5369.
Gillespie PNO, Martsinovich N. . ACS Appl Mater Interfaces. 2019 Sep 4;11(35):31909-31922.
People
For further information about Theory at 91Ö±²¥ please see the staff page of individual researchers below:
Professor Anthony J. H. M. Meijer
Professor Patrick Fowler FRS (Emeritus)
Professor Barry Pickup (Emeritus)